
Journal of Modern Physics, 2012, 3, 187-199 
doi:10.4236/jmp.2012.32026 Published Online February 2012 (http://www.SciRP.org/journal/jmp) 

Classical Interpretations of Relativistic Phenomena 

Sankar Hajra 
Indian Physical Society, Calcutta, India 

Email: sankarhajra@yahoo.com 
 

Received October 9, 2011; revised December 16, 2011; accepted January 4, 2012 

ABSTRACT 

Electric charges, electric & magnetic fields and electromagnetic energy possess momentum and energy which we could 
experience with our sense organs. Therefore, all these are real physical entities (objects). All physical objects are sub- 
ject to gravitation. Therefore, electromagnetic entities should similarly be subject to gravitation. In this paper, we have 
shown that classical physics with this simple consideration is equivalent to the theory of relativity—special & general— 
to explain many puzzling electrodynamic as well as gravitational phenomena. 
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General Relativity 

1. Introduction 

Important observations on the behavior of light waves 
began to be performed from the time of Roemer (1670) 
and important experiments on electricity and magnetism 
began to be conducted from the time of Coulomb (1783). 
Maxwell (1865) tried to unify both streams of knowledge 
and dared to realize what light was. There were numer- 
ous experiments to demonstrate that Maxwell’s theory 
was correct, though some might argue that the theory was 
inadequate. 

In the Maxwell’s theory, if c is considered to be the 
speed of light in free space, Maxwell’s equations are then 
valid in free space where the earth is obviously moving with 
an appreciable velocity. Therefore, the Maxwell’s equa- 
tions should be affected on the surface of the moving ear- 
th. But curiously, all electromagnetic phenomena as obser- 
ved on the surface of the moving earth are independent 
of the movement of this planet. To dissolve this problem, 
Einstein (1905) assumes that Maxwell’s equations are in- 
variant to all observers in steady motion which acts as 
the foundation of Special Relativity. In the second place, 
the relativistic mass formula is routinely confirmed in par- 
ticle accelerators. Therefore, Special Relativity is held to 
be more acceptable than Classical Electrodynamics. In the 
second decade of the past century, Einstein extended his 
special relativity to General relativity, a space-time cur- 
vature physics wherein he explained many puzzling gra- 
vitational phenomena with the application of his space- 
time curvature proposition. 

From the days of inception of the theory of relativity 
(1905), numerous physicists like Paul Ehrenfest (1909), 

Ludwig Silberstein (1920), Philipp Lenard (1920), Herbert 
Dingle (1950), F. R. Tangherlini (1968), T. G. Barnes et 
al. (1976), R. Tian & Z. Li (1990) and many others have 
doubted (fully or partially) over the foundation of the theory 
of relativity and many of them have proposed alternative 
approaches. In the period between the last decade of the 
last century and the first decade of the present century 
(1991-2010), C. A. Zapffe, Paul Marmet, A. G. Kelly, N. 
Hamdan, R. Honig and many others have made impor-
tant contributions in this direction. 

In the first part of this paper, we have shown that the 
mass of a point charge as per Classical Electrodynamics 
is the same as that of Special Relativity and the founda- 
tion of both the deductions lies in Classical Electrody-
namics of Heaviside (1988). Therefore, mass formula con- 
firmed by the particle accelerators is fully consistent with 
Classical Electrodynamics too. 

In the second part, we have shown that the considera- 
tion of the effects of gravitational field of the earth on elec- 
tromagnetic entities easily explains classically those puz- 
zling gravitational phenomena (explained by Einstein) as 
well as why all electromagnetic phenomena as observed 
on earth’s surface are independent of the movement of the 
earth; and this elucidates that both the invariant proposition 
and the space-time curvature proposition of Einstein are 
unnecessary. 

Our goal is to show here the efficacy of the classical 
physics to interpret relativistic phenomena rationally and 
easily. In this study we have only used Maxwell’s electro- 
magnetic equations, Newton’s equations of motions and 
his theory of gravitation. We have used no theory of our 
own. 
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2. Classical Electrodynamics—Auxiliary 
Potentials & Auxiliary Fields 

2.1. The Electric Field (E) and the Induced 
Magnetic Field (B*) of a Steadily Moving 
System of Charges 

The potential  of a stationary system of charges is 
determined by the Poisson’s equation: 

 0Φ

2
0

0




                     (1) 

But, the scalar potential ( ) and the induced vector 
potential ( *A ) of this system of charges when moves in 
the OX direction with a velocity  are governed by 
D’Alembert’s equation: 
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where   is the charge density of the system, 0  is the 
permittivity and 0  is the permeability of free space such 

that 1c   0 0  and ( , , )x y z  are the Cartesian co-or- 

dinates introduced in free space. 
In such a situation, the potentials at the point ( , , )x y z  

at the instant t and the potentials at the point  
( d ,x u t , )y z  at the instant ( d  in free space will 
be the same. Therefore, 
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Similarly, 
* * 2 * 2 *

2
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,x x x xA A A A
u u

t x t x

   
   
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Equations (5) & (6) are steady state equations in Clas-
sical Electrodynamics. 

By the use of Equation (5), Equation (2) could be re-
placed by 

 
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0

1 u c
x y z

   
  

  
         (7) 

and by the use of Equation (6), Equation (3) should be 
replaced by 
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* *0, 0y zA A                          (9) 

Comparing Equation (7) with Equation (8), we have, 

*
x

2A u c                 (10) 

Therefore, to determine E  and B* we are only to de-
termine  . 

Heaviside first published the deductions of B* and E  
through A* directly by the use of his operational calculus 
in 1888 [1] and then in 1889 [2]. Thomson [3] & Lorentz 
[4] however, traveled a different path and solved the pro- 
blem in a beautiful way which is as follows: 

Now, construct an auxiliary system ( , , )x y z    where 
the charged system is considered stationary such that 

, ,x x y y z z                (11) 

 2 21- , 1k u c   k  

which transforms Equation (7) to 
2

0    /
                 (12) 

Since this equation is used to determine the potential of a 
stationary system of charges as in Equation (1), the pro- 
blem is reduced to an ordinary problem of electrostatics. 

The auxiliary system constructed by Equations (11) is 
static and elongated. There, we have, 

k                       (13) 

/2
0                    (14) 

where   is the auxiliary charge density and   is the 
auxiliary scalar potential or the mathematical auxiliary of 
 . 

Constructions of auxiliary quantities for point charge ele- 
ctrodynamics are very simple as shown in the Section 2.7, 
as the shape of the point charge is considered to be the 
same in the auxiliary system. But to deduce auxiliary quan- 
tities related with large charge electrodynamics is very 
difficult as large charges change their shapes in the auxi- 
liary system, which requires separate independent treat- 
ment. 

2.2. Relation between Real Scalar Potential (for a 
Steadily Moving System of Charges) and 
Auxiliary Scalar Potential 

Comparing Equation (12) with Equation (14) using Equa- 
tion (13), we have, 

                    (15) 

Thus we see that the potential of a moving system of 
charges is not connected to the potential of the same sys- 
tem at rest. That potential is related with the potential of 
the stationary system (auxiliary system) in which all the 
co-ordinates parallel to OX, OY and OZ have been chan- 
ged in the ratio determined by Equation (11). 

From the above analysis, we have, 
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 
 

*

2

2

*

*

*

being 0

being 0

x x

x

y y

y

z z z

E x A t

u

y

x x x
c

E y A t y

A y E

E E A

 



     

          

        

     



E

(16) 

xE , yE  and zE  represent mathematical auxiliaries 
of the field components xE , yE , .zE  

From *  * B A  and Equations (9), (10) and (16), 
we have for the induced magnetic field : *B
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From which we get, 

* =B u E c2                         (18) 

2.3. The Magnetic Field (B) and the Induced 
Electric Field (E) of a Steadily Moving 
System Containing Line Current 

The vector potential A  of a line current (flowing in any 
arbitrary direction) moving with a system with constant 
velocity of translation  is as well known governed by the 
equation, 

u

2
2

0c




  V
A              (19) 

where V  is the current density.  represents the velo- 
city of charges (constituting the line current) with respect 
to free space when the system moves with a velocity  
in free space in the OX direction. 

V

u

Using auxiliary Equation (11), in a similar procedure 
used for the construction of Equation (12), we have from 
Equation (19), 
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and the similar equation for the z-component. 
For the auxiliary system when the magnetic field de-

pends on the length of the current element but not on its 
cross-section as in the case of a line current, we have from 
a similar procedure used for the construction of Equa- 
tion (14), 
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and the similar equation for the z'-component ( xA , yA  
and zA  are the components of the Auxiliary magnetic 
potential in the auxiliary elongated system). 

2.4. Relation between Real Vector Potential (of a 
Moving System of Current) and Auxiliary 
Vector Potential 

By comparison of Equations (20), (21) and the similar 
Equation for z -component with the relevant equations 
in the auxiliary system i.e., Equations (22), (23) and the 
similar equations for the z -component we have, 

, ,     x x y y z zA A A A A A          (24) 

whence, by using  B A , for the moving line cur-
rent, we have, for the original vector field 

, ,     x x y y z zB B B B B B          (25) 

For the induced electric field governed by the relation 

 *   E u B  

we have, 
* * *0, ,     x y z zE E uB E u yB        (26) 

Now, when a system with an independent electric field 
(originating from charges of any shape and size) and an 
independent magnetic field (originating from line currents 
flowing within the system in any arbitrary directions) is 
steadily moving with a velocity  in the OX direction, we 
get the following relations [adding the same components 
of fields together as in Equations (16) and (17) with 
Equations (25), and (26). 

u

  , ,          x x y y z z z yE B E E uB E E uB     (27) 

2 2, ,             
  

 


x x y y z z z y

u u
B B B B E B B E

c c
(28) 

2.5. Velocity of Light in a Dielectric Steadily 
Moving in Free Space: Fresnel Drag 
Coefficient in Fizeau Experiment 

Let a point charge  at the time t pass the origin of a 
Cartesian co-ordinate system constructed in free space. 
Let the charge have acceleration a in the negative direc- 
tion of the OY axis. Then from Maxwell, a spherical wave 
will radiate from the origin as it were a point source with 
the field vectors as function of time and distance from 
the source. Now let this radiation pass through a piece of 
stationary dielectric (refractive index n) that touches the 
origin of the radiation. Now let us concentrate on the pro- 
pagation of the wave along OX direction in the dielectric. 
We have now from Maxwell, 

Q
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   0 0,
4π 4πy z

Qa Qa
E B

x x

        (29) 

as per previous discussion the auxiliary fields will be 

,
4π 4π

   
y z

Qa Qa
E B

x x
          (30) 

[  , the permeability, ,  the permittivity of the die- 
lectric,   dx x  and 1d dk   where 

 1 22 2 21dk n u c   for the dielectric]. 

For, the fields owe their origins from point charges and 
the fields are manifested in the dielectric. 

Therefore, from Equations (29) and (30), 

   0 0   y zy z
E B E B c n          (31) 

Now if the dielectric moves with a velocity  in free 
space in OX direction, the electric field inside the dielec- 
tric will change to 

u

yE  and the magnetic field inside the 
dielectric will change to zB  and thereby the velocity of 
the ray in the dielectric will change to ( )xV  such that 
using Equations (27) & (28) as modified for dielectric, 
we get, 
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Now dividing the numerator and the denominator by 
zB  and using Equation (31) we have, 

 21 1
1

x

c n u
V c n u

u

nc


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
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(vide alternative deduction in [5]). 

2.6. Velocity of a Charge in a Steadily Moving 
Electromagnetic System 

Let a system of charges and currents be stationary in free 
space represented by Cartesian Coordinates. Now let a point 
charge q placed inside the system move with an instant- 
taneous velocity x  in the OX direction due to an elec-
tric field (E0) and a magnetic field (B0) originating from 
those charges and currents. 

Then the y-component of the Lorentz force acting on q 
should be zero, i.e., 

     0 0 0 0xy y z
F q E B       (34) 

from which we get, 

   0 0 xy z
E B                 (35) 

For a steady motion of the point charge with that velo- 
city for all the time, we are to construct the following field 
equations from an analogy of the fields as given in Equation 

(30): 

       0 0, xy z
E Af r B Af r v   (36) 

where A is a constant and the origin of the fields are point 
charges. 

The relevant auxiliary fields are 

   ,    y zE Af r B Af r vx      (37) 

In that case, we have, 

   0 0   y zy z
E B E B  xv        (38) 

Now, if the system moves with a velocity u in the OX 
direction in free space, we have for the velocity  xV  
of the test charge in the free space using Equations (27) 
& (28), 
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where yE  and zB  are the electric and magnetic fields 
due to the system of charges and currents moving with 
the system. 

Dividing the numerator and the denominator by zB  
and using Equation (38) we have, 

2
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u
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
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when the test charge moves in any arbitrary direction in 
XY plane, we have (say), 

       0 0 0 0andx yy z x z
E B E B         (41) 

Now, if the system moves with a velocity u in free 
space in the OX direction [using Equations (27) and (28)] 
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For steady motion we have    0 0 yx z
E B   as in 

Equation (41) and therefore, following arguments as gi- 
ven to construct Equation (38), we have, 

  x zE B y              (43) 

Now using Equations (38) & (43), we get from Equa-
tion (42), 
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and similarly, 
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2.7. Derivation of the E-Field and the B-Field 
and Electromagnetic Momentum of a 
Steadily Moving Point Charge 

Now suppose that a point charge moving with a velocity 
u in the OX direction passes the origin of a co-ordinate 
system fixed with the free space at the instant t. 

We are to determine E at P ( , , )x y z  at the instant t. 
The auxiliary fields should be in the same form as 

those of the stationary fields with the auxiliary co-ordi- 
nate notations (as a point charge is a point charge in the 
auxiliary system). 

/

/3 3 3
0 0

,  ,  
4 4 4

 
    

   x y z

Qx Qy Qz
E E E

e r e r e r0

   (46) 

where , ,  x y zE E E  are the components of auxiliary elec- 

tric field at P  , ,x y z  


 which is the corresponding 

point of P  , ,x y z  such that the angle between OX and 

OP is   whence using Equations (11) and (16), we have, 

   1 2 1 22 2 2 2 2 2 2 2

3 22 2
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3 2
0
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x y z x y zE E E E E E E

Qk r u
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 




      

 
    

(47) 

The auxiliary E  is directed along (OP r ). The- 
refore, the real field E  is directed along OP ( ). Now, 
remembering Equation (18) we have, 

r

* c B u E 2              (48) 

These deductions could be found in the works of Mor- 
ton [6], Whittaker [7], and Oppenheimer [8]. Miller’s [9] 
comments in this respect is noteworthy. The similar re- 
sults were derived by Liénard-Wichert [10,11] from the 
consideration of retarded potential. Many authors as cited 
by Jefimenko [12] derive the results classically either from 
the consideration of retarded potentials or from generali- 
sed time dependent Biot-Savart and Coulomb field laws. 
Heaviside first derived Equations ((47) & (48)) as early 
as in 1888. Therefore, these fields are called Heaviside’s 
fields. The deductions of Special Relativity are the same 
as the deduction given above. Special relativity assumes 
that the auxiliary equations are real which does not affect 
this deduction in case of a point charge. 

It could easily be shown by the similar analysis that a 
steadily moving charged ellipsoid having the axes :k R  

:R R   (Heaviside’s Ellipsoid, 0R  ) has the same 
external effects as those of a similarly moving point cha- 
rge as the ellipsoid is a sphere in an auxiliary system, and 
the sphere has the same form of potential as that of a point 
charge in the stationary system. This important observa- 
tion was first noted by Oliver Heaviside [13]. 

Electromagnetic Momentum (P) of a point charge mo- 

ving with a velocity u in the OX direction, 
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(as yE , zE  and d  are related to a sphere and so each 

integral is equal to 
2

2
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In this instant case, 0yP  , . 0zP 

6π

2

2
0

Q
=

e c δRk

u
P u= m         (52) 

Suppose that a point charge at rest in the free space is 
subjected to a force F which displaces the charge a dis-
tance dx and thereby, the charge attains a velocity u in 
the free space. In that case, we could classically deduce 
from Equation (52), the kinetic energy K of that point 
charge as (when u = c), 

 
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d

d

1
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u u
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t
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 K F x x

2
    (53) 

The equation is applicable only to a point charge but 
not to a big charge or a point particle. 

This Equation (49) defines the longitudinal electroma- 
gnetic force, 

   3 3
0 0d| | d   P u f m k f m f| | | | | | | | F   (54) 

where F and f (acceleration of the point charge) are pa- 
rallel to u. 
and the transverse electromagnetic force 

   0| | | |P u f m k f m f 0    F       (55) 

where f is parallel to F and perpendicular to u. 
The quantities  and 0

3
0m m m  are respectively 

called the longitudinal and transverse electromagnetic ma- 
sses of a steadily moving point charge. 

2.8. Electromagnetic Fields and the 
Ulhenbeck-Goudsmit Precession 

Electromagnetic momentum of a point charge possesses 
  coefficient. This coefficient should be responsible for 
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the spinning of a spherical electron with an appreciable 
radius while it moves in its orbit. 

We know from Faraday that when a system of charges 
moves with a velocity u in free space, a magnetic field 

* c B u E 2             (56) 

is induced in a small conducting strip stationary in the free 
space (E being the electric field in the stationary con- 
ductor due to the system of moving charges). 

Faraday also observes that if the system of charges be 
stationary in the free space and the strip moves with the 
same velocity u in the free space in the same direction a 
magnetic field 

* c  B u E 2             (57) 

is induced in the conductor. 
Now if a spherical rigid electron with an appreciable ra-

dius is embedded in the moving strip and the strip moves in 
an electric field, there will be a magnetic field inside the 
strip and then from the consideration of Ulhenbeck and 
Goudsmit, the electron will precess about its instantaneous 
normal to the orbital plane with the angular velocity 

2UG

e

mc
   u E          (58) 

e is the charge of the electron and m is defined as per 
the equation (51). 

When the electron rotates in a circular orbit of radius r 
with the velocity u in a Coulomb field in the anticlock-
wise direction, we have, 

2u
e m

 
 

 
E

r




             (59) 

Using the Equation (59), and the well known relation 
we could get from Equation (58),  , Ωu r

2

2UG

u

c
Ω Ω                (60) 

where  is the angular velocity of the electron in its 
orbit. 

( )Ω

We see here that Ulhenbeck-Goudsmit precession is in 
the anticlockwise direction when the electron moves in 
its orbit in the anticlockwise direction. 

2.9. Electromagnetic Momentum and the  
Thomas Precession 

Apart from this hypothetical Ulhenbeck-Goudsmit prece- 
ssion of the electron, the electron should spin around its 
own axis while it moves in its orbit from the considera- 
tion of classical electrodynamics of Maxwell. 

The expression for electromagnetic momentum of a 
steadily moving point charge contains a   coefficient. 

 1 22 21 1 u c    
 

In case of a curved motion of a spherical rigid electron 

there is always a difference of the   coefficients of the 
x-component and y-component of the electromagnetic 
momentum [cf. Equation (52)] of the infinitesimal charge 
element on any point 1  on the body of the electron mov- 
ing in a curved path and this gives rise to the spin of the 
electron responsible for Thomas Precession. 

O

To get a picturesque view of this interesting pheno- 
menon, let us consider that this paper plane represent any 
plane of the free space. Let us now construct a Cartesian 
Co-ordinate system OX and OY at any point O in this 
paper plane (Figure 1) and let the centre of the electron 
be pivoted in this paper plane in such a way that the cir- 
cumference of the electron normal to its axis is coplanar 
with this paper plane. Now let the centre of the electron 
be moved from O to P in the curved path OP during a 
time period . Let for simplicity consider that the cen-
tre of curvature of the curved path OP lie on OY. 

dt

In this set-up, we shall view the curved motion of the 
electron and calculate the spinning of electron roughly. 
Consider that the electron starts its motion from O with a 
velocity u towards OX and after a small time interval  
it reaches A. When it reaches A, the electron is pushed 
with such a (very small) velocity  towards a direction 
parallel to OY so that the electron will reach the point P 
after the time interval . 

dt

u

dt
Therefore, 

1tan tan


 
u

POX
u

       (61) 

The angle 1  being very small we have, 

1



u

u                   (62) 

Now the x-component and the y-component of the ele- 
ctromagnetic momentum of the infinitesimal charge ele-
ment around any point 1  on the electron body which is 
moving with the centre of the electron, 

O

0xP m u                (63) 

 

 

 

Figure 1. Curved motion of an electron and consequent tho- 
mas precession as per maxwell. 
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0 yP m u                 (64) 

(u being large and  being very small) where 0  is 
the electromagnetic mass of that infinitesimal charge ele- 
ment at rest in free space as defined in Equation (50). 

u m

Therefore, the resultant direction of momentum ( 1O R ) 
of that infinitesimal charge element at 1  will roughly 
make an angle 2

O
  with  axis drawn parallel to OX 

at  such that 
1 1O X

1O

1 1 2tan tan
u

RO X
u





          (65) 

2  being small, we have, 

2 



u

u
.              (66) 

But, the charge element at 1 should normally move 
with its centre towards  parallel to OP such that 

O

1 1O P

1 1 1 1


  
u

PO X
u              (67) 

Under this situation, the point 1  should deflect to-
wards  axis (parallel to OX axis). 

O

1 1

The angle of deflection of the direction of motion of 
the moving infinitesimal charge element around  to- 
wards  axis (parallel to OX axis) 

O X

1O

1 1O X

2 1

1
d 1  


 

     
 

u

u
       (68) 

Thus during the travel of the electron in the antic- 
lockwise direction in its orbit for the time period , 
every infinitesimal charge element of the electron body 
will tend to deflect by a very small angle 

dt

d  in the 
clockwise direction. 

But the electron is a rigid body and pivoted, too, to a 
fixed circular path. Therefore, during the time period , 
the electron will rotate through an angle 

dt
d  in the clo- 

ckwise direction and as the electron moves always in a 
curved path, this rotation continues. 

Now at the point P, the velocity components of the 
centre of the electron read: 

cosxu u r               (69) 

sinyu u r               (70) 

  being the angle that the arc OP subtends at the centre 
(not shown in the Figure 1), , the radius of curvature 
of OP and  being the angular velocity of the electron 
in its orbit. 

r


From Equations (69) and (70), we get, 

tan


 
u udt

u r                  (71) 

Using Equation (71), we get from Equation (68), 

2 1

1 d
d 1

u t

r
  


 

     
 

        (72) 

2

2

d 1

d 2T

u

t c


                   (73) 

T  being the angular velocity of spinning of the 
electron around its axis while it moves in its orbit. 

We see that this spinning (Thomas spinning) is in the 
clockwise direction when the electron rotates in its orbit 
in the anticlockwise direction. 

The Equation (73) could be written using Equation (59) 
as 

2

1
Ω

2T

e

mc
  u E              (74) 

Net Precession. 
Therefore, the net angular velocity of precession could 

be roughly determined as 
2 2

2 2 2

1 1

2 2N UG T

u u u

c c c

2

        Ω   (75) 

We see that the net precession is in the anticlockwise 
direction. 

Alternatively, using Equations (58) & (74) this could 
be written as 

   

   

2 2

2 2

1
Ω

2
1 1

2 2

N

e e

mc mc
e e

mc mc

    

    

u E u E

u E E u
    (76) 

Thus when an electron rotates in its orbit in the anti-
clockwise direction, the net precession is in the anticlo- 
ckwise direction. 

2.10. Transverse Doppler’s Effect 

As per classical electrodynamics, an elastic electromag- 
netic force acting on point charges inside matter causes 
electromagnetic radiation. Now if the matter moves, the 
dipole moves with it. Thereby the electromagnetic force 
inside matter changes and consequently, frequency and 
time-period of oscillation of the dipole change as per the 
following classical equations. 

Let an electric force F0 (originating from a small cha- 
rge) drive a point charge back and forth from one end to 
the other end of a radiating dipole stationary in free space. 
Then, as per classical equation, 

2
0 0 0= m F S             (77) 

velocity of oscillation being small, where 0  is the ele- 
ctromagnetic mass of the charge in the stationary dipole, 

0

m

  is the radian frequency of oscillation of the charge, S 
is the separating distance of the dipole. 

Now, if the dipole moves with a velocity u in free spa- 
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ce in any direction perpendicular to its direction of oscil- 
lations, the electric force and the magnetic force acting 
on the charge will be respectively from Equations (47) 

and (48), (when   = 90˚) 0F  and  2 2
0u c  F .The- 

refore, total electromagnetic force acting on the moving 
charge is 

 0 0
2 2u c k    0F F F F    (78) 

Now, when the above dipole moves and radiates, we 
have, 

2= mF S                  (79) 

where 0(m m )  is the transverse electromagnetic mass 
of the charge in the moving dipole as defined by the 
Equation (55),   is the frequency of oscillation of the 
charge which is moving with a velocity u in free space 
with the dipole and F is the electromagnetic force acting 
on the moving charge. 

Comparing Equations (77) and (79) using Equations 
(55) and (78) for the dipole moving with an uniform ve- 
locity in any direction perpendicular to its direction of 
oscillation we have, 

0k                      (80) 

The equation explains transverse Doppler’s effect cla- 
ssically. 

2.11. The So-Called Time Dilation 

Now if the frequency changes, time period too changes. 
For a radiating dipole stationary in free space, 

0 2t 0                    (81) 

where 0  is the oscillation period and 0t   is the radian 
frequency. If the same radiating dipole moves with a ve- 
locity  in free space in a direction perpendicular to its 
direction of oscillation, then for the moving dipole the 
oscillation period  and radian frequency 

u

t   satisfy, 

2t                       (82) 

Comparing Equations (81) with (82) using Equation 
(80) we have, 

0t t                       (83) 

or the period of oscillation of the above moving dipole 
increases with its velocity in free space. 

2.12. Increment of Life Spans of Moving 
Radioactive Particles 

A radioactive particle decays when electric and magnetic 
forces inside the particle act to disintegrate the particle. 
When the radioactive particle moves, the electric and 
magnetic forces acting inside the particle change. And con- 
sequently, the disintegration process in the moving ra-

dioactive particle changes as per the following classical 
equations: 

Let at the initial instant 0 , there be 0  radio- 
active particles of a particular species. Let us find the 
number N of those particles that will remain untrans- 
formed by an arbitrary time 0 . Since we are dealing 
with spontaneous transformation, we may presume that 
the rate at which the total quantity of radioactive particles 
is diminishing at any instant is 1) proportional to the total 
quantity N of radioactive particles present at that instant 
when the magnitude of the electromagnetic force 0

0t 

t

N

F  
(acting inside the particles on the charge to be detached) 
is constant, and 2) proportional to the magnitude of the 
electromagnetic force 0F  acting inside the particles on 
the charge to be detached when N is constant, which may 
be a priori plausible. Therefore we may write: 

0 0d dN t F N               (84) 

where 0F  and N both vary. Moreover, we have, 

0 0 0,N N f F t               (85) 

Combining above two equations we have, 

0 0
0

F tN N e                  (86) 

where   is the proportionality constant. 
Now if the radioactive particles move with a velocity u 

in free space in any direction perpendicular to their di- 
rection of the detaching force, after a time t we will find 
N untransformed particles such that 

0
FtN N e                  (87) 

where F  is the magnitude of force acting on the charge 
to be detached in the moving particle. Comparing Equa- 
tions (86) with (87) using Equation (78), we have, 

0t t                      (88) 

This analysis at once destroys “here is one time”, “there 
is another time”—concept as well as the twin paradox of 
relativity. 

Now, if the source be stationary in the free space and 
the observer moves, from the consideration of Maxwell, 
there should be no transverse Doppler effect and no time 
increment. If transverse Doppler effect and time increment 
are confirmed experimentally in such cases (with electro- 
magnetic corrections), only then some special theories could 
be held superior in this regard. 

Some particles like Lambda particles originate when a 
charged particle collides with a charged particle and on 
decay they produce charged offspring. Though these par-
ticles are outwardly neutral, they are not neutral in its in- 
terior. Therefore, when in steady motion, life spans of 
lambda like particles should increase with velocity by   
factor. 
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3. Interaction of Electromagnetic Entities 
with Gravitation 

3.1. Electric Charge and Gravitation 

We know that electric charges possess momentum and 
energy just like all other physical objects. We could ex- 
perience momentum and energy of these charges with 
our sense organs. Therefore, charges are real physical en- 
tities (objects). All objects are subject to gravitation and 
they have the same acceleration towards the centre of gra- 
vity in the same gravitating field. Therefore, charges should 
similarly be subject to gravitation and the acceleration of 
a point charge should be the same as the acceleration of a 
point object and that should be directed towards the in- 
teracting gravitating field (unlike its acceleration during 
its interaction with the electric field). 

This implies that the gravitating mass of a point charge 
is proportional to its longitudinal electromagnetic mass. 
Transverse electromagnetic mass should have no role in 
this interaction. If it had any role in the interaction, cha- 
rges should not have the same acceleration as those of the 
material bodies in the same gravitating fields. Thus, in a 
gravitating field, a point charge acts a mass point; mass 
of the mass point is proportional to the longitudinal elec-
tromagnetic mass of the point charge. 

Thus, when a point charge moves in a gravitating field, 
by dint of our above analysis, we have for the Radial for- 
ce: 

2GM r r r 2
 

  
 

         (89) 

where G is the gravitational constant, M is the total mass 
(non-electromagnetic mass & mass originating from cha- 
rges in the gravitating body) of the gravitating body con-
centrated at the origin and the point charge passes the 
point ( ,r  ) in the plane of motion in the polar co-or- 
dinate. 

Now, as per the old physics, Cross-radial Force: 

 3 2
0

1 d
0

d
m r

r t
 

  


       (90) 

From which we have the angular momentum of the 
point charge, 

3 2
0 constantA m r 


         (91) 

3 2 constantr H 

           (92) 

Now let 
1U  r                     (93) 

Therefore, the equation of motion of the point charge in 
a gravitating field should be as per Newtonian analysis: 

2
6

2 2 2 2

d

d

U GM GM GM
U

[replacing H of the second term of the last expression by 
Equation (92) and noting that for circular motion 

u r


 ]. 
2

2 2

d

d

U GM G
U

2 2

3 M

H c r
              (95) 

Vide full calculations in [14,15]. 

3.2. Exact Equation of Planetary Motion 

Suppose that a planet of non-electromagnetic mass pm  
originating from  amount of positive and negative cha- 
rges in total (ignoring the sign of the charges). For simple 
calculation let us assume that the positive and negative 
charges are concentrated separately near the centre of the 
planet. Let 

Q

sM  be the total mass (non electromagnetic 
mass & mass originating from the charges associated with 
the sun). In this situation as per the previous discussion, 
the equation of planetary motion will be as under: 

 

2 2

3 2
0 constant

s

p

GM r r r

A m m r



 





 
   

 

  

    (96) 

when  and m0 u c 
2

2

3

2 p

u
m

c
, 

   3 22 2 2
0 1pA m m r u c


      (97) 

3 2 Constant.r H 

             (98) 

Therefore, the equation of motion of a planet in the 
sun’s gravitating field should be 

2

2 2

3d

d 2 2
s sGM GMU

U
H c r

            (99) 

The Equation (99) is similar to Equation (95), This 
classical equation will at once explain the advance of the 
perihelion Mercury. 

Vide full calculations in [14,15]. 

3.3. Equation of Motion of the Light Rays in the 
Gravitating Field of the Sun 

2

2

3 u

H H H c



     (94) 

Light-rays possess electromagnetic momentum and elec-
tromagnetic energy. Many people believe that an electron 
and a positron “coming together, could annihilate each 
other with the emission of light or gamma rays” [16] and 
“light also acts like electrons” [17], If that be so, a point 
light will similarly be subject to gravitation as in the case 
of a point charge. But in this case, 0 for a point light 
being H for the point light will be infinity and the 
equation of motion of a point light in a gravitating field 
will be 

m
0,
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2

2 2

3d

d 2
sGMU

U
c r

            (100) 

which will at once explain the bending of light rays gra- 
zing the surface of the sun. 

3.4. Gravitational Red Shift 

Suppose that a ray with the radian frequency  is com- 
ing from the surface of a star of radius t  and of mass 

t

R
M  to the surface of the earth which is x distance away 
from the centre of a star. As per our previous discussion, 
electromagnetic energy has the same acceleration as that 
of material bodies as well as point charges in the same 
gravitational field. 

Let  tf R  be the gravitational acceleration of a ray 
on the surface of a star and ( )f x  be the gravitational ace- 
leration of the same ray when it is on the surface of the 
earth. 

Then, we have from the law of gravitation [18], 

 
 

2

2
t

t

f x R

f R x
              (101) 

(Remembering   2
t

t
t

GM
f R g

R
  ), 

  2
tGM

f x
x

 .             (102) 

Now, for the rectilinear motion of the ray towards OX 
direction, we have, 

  d d d d

d d d d

v v x v
f x v

t x t
  

x
.    (103) 

Therefore, the differential equation for the velocity of 
the ray should read, from Equations (101), (102) and (103), 

2

d
d

t

v

tc

x

R

x
v v GM

x
           (104) 

where c is the velocity of the ray on the surface of the 
star and v is the velocity of the same ray on the surface of 
the earth. From which we have, 

1 2

2 2
1t t

t

GM R
v c

R x

      
 





   (105) 

Therefore, 

2
1 t

t

GM
v c

R c

 
 

 
             (106) 

when x is large. 
From which we have, 

21 
 

  
 

t

t

GM

R c
           (107) 

(  is the radian frequency of the same light ray at the 

surface of the earth), as the number of complete waves 
passing through a point (i.e., frequency) must be propor- 
tional to the velocity of the waves . 

4. Gravitation and Puzzling Electrodynamic 
Phenomena 

Maxwell’s equations of electromagnetic fields are appli- 
cable only in free space and inside systems stationary in 
free space. One would then expect some corrections/mo- 
difications of Maxwell’s equations when the electromag- 
netic phenomena are studied on the surface of the earth 
which is moving with a high velocity in the free space. 
But those corrections are not needed! 

All electrodynamic phenomena like reflection, refract- 
tion, diffraction, interference etc., as observed on the sur- 
face of the earth, either with star light or with earth light 
are independent of the movement of this planet. That is: 
the earth’s surface is exactly equivalent to free space for 
our description of electromagnetic phenomena on it. 

Just like electric charges and electromagnetic energy, 
electromagnetic fields possess momentum and energy which 
we could experience with our sense organs. Therefore, ele- 
ctromagnetic fields, too, are real physical entities (objects). 
All physical objects at the surroundings of the earth are 
carried with the earth. Therefore, the electric and magne- 
tic fields existing at the near vicinity of the earth’s sur- 
face, should spin, translate, and rotate with the earth. 

4.1. The Michelson-Morley Type Experiments in 
Air and Water 

This will at once explain the null results of all the Mi- 
chelson-Morley type Experiments in air and the Mas- 
cart-Jamin type Experiment in water at rest on the earth’s 
surface; and may give us some insight to understand why 
all electromagnetic phenomena as observed on the sur- 
face of the earth are independent of the motion of this 
planet [19]. 

4.2. The Kennedy-Thorndike Experiment 

Electromagnetic radiation is the propagation of vibration 
of electric and magnetic fields. In the Kennedy-Thorn- 
dike experiment, it is observed that the velocity of light 
on the surface of the earth is independent of spinning of 
the earth around its axis [contra vide (4.7.)]. 

4.3. The Tomaschek (1924) and Miller’s 
Experiment (1925) 

Where the Michelson-Morley experiment has been per- 
formed with starlight and sunlight, similar null results 
have been confirmed. 

This can only happen if the electric and magnetic fields 
originating either from the earth, stars or from the Sun 
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and existing at the near vicinity of the earth’s surface, spin, 
translate and rotate with the earth. 

4.4. The Trouton-Noble Experiment (1904) 

In a laboratory, when a charged condenser moves, the elec- 
tric field around it changes and thereby a magnetic field is 
created. If the electric field originating from the conden- 
ser would move along with the condenser, there would 
be no change of electric field around the condenser and 
thereby, there would be no magnetic field around it. 

Now, a condenser at rest on the earth’s surface moves 
with the earth. But the electric field around the condenser, 
too, moves with it. And therefore, the Trouton-Noble Ex- 
periment (1904) fails to detect any magnetic field around 
the condenser. This implies that the earth carries the con- 
denser along with its electric field. 

4.5. Sagnac Experiment 

As per classical electrodynamics, light signals, divided in 
two parts and sent in opposite directions around a fixed 
circuit on a spinning disk, should not return to the point 
of division at the same instant. Because, the speed of 
light on a spinning disk is c – w when the light beam 
travels towards the direction of spinning of the disk, and 
c + w when the light beam travels in the opposite direc-
tion, w being the spinning velocity of the point on the disk 
where the speed of light is being measured. This effect is the 
primary effect of spinning. The actual experiment con-
firms this. This effect of light on a spinning disk was ob- 
served by G. Sagnac in an interferometer fixed on the disk 
in 1913 and is known as the Sagnac effect. But the earth’s 
motion seems to have no effect on the result. The implica-
tion is the same as stated in the previous examples. 

4.6. The Observations of Bradley (1728), 
Airy (1871) and Zapffe (1992) on 
Aberration of Light 

Aberration of Astral and Terrestrial Light 
1) Suppose a ray from an overhead fixed star is com- 

ing to the earth which is moving with respect to the fixed 
star with a velocity u normal to the ray. 

From the consideration of the relative velocity of clas-
sical physics, the man on the earth should see the star not 
on overhead through a telescope. Instead he should see the 
star deflected at an angle   towards the direction of mo- 

tion of the earth from overhead such that tan
c

 
u

 where 

c is the velocity of the ray in space fixed with the fixed 
star. Now if the telescope be filled with water, the man 
should see the star at an angle 1  (such that 

1tan
n

c
 

u
) deflected towards the direction of motion of 

the earth from overhead, n being the refractive index of 
water. 

In this case, the ray velocity and the phase velocity of 
the wave coming from the star will be different. The di-
rection of the ray is here is the apparent direction and a 
ray coming from a mountain top should have the same 
aberration as given in the above analysis. For, the ray as 
per Maxwell should propagate with a velocity c with res- 
pect to free space which could be conceived as fixed with 
the fixed stars. 

2) Now if the stars and the planets carry electric and 
magnetic fields along with them at their surroundings, a 
ray from an overhead fixed star will reach the surround-
ing of the sun and the ray will be carried with the sun. 
Then it will proceed and strike the electric and magnetic 
fields at the near vicinity of earth’s surface at an angle 
  deflected towards the direction of the motion of the 

earth from overhead such that 1tan
n 
u

c
, in case the 

earth is moving with respect to the sun with a velocity 
u normal to the ray and c is the velocity of light in the 
solar space; and the ray will be carried with the earth. 
The ray and its direction here are real. 

On the surface of the earth, in this case, there is no re- 
lative motion between the ray and the earth towards the 
direction of motion of the earth. Therefore, a man on earth 
will see the star with an angle   tilted towards the dire- 
ction of motion of the earth from overhead (as was ob- 
served by Bradley). If he fills the telescope with water, 
the ray velocity inside water must be c/n. But as there is 
no relative velocity between the ray inside water and the 
earth towards the direction of motion of the earth, the po- 
sition of the star will not alter (i.e, there will be no fur- 
ther aberration as observed by Airy). Here the ray velo- 
city and the phase velocity are the same and the ray and 
its direction in both the instances are real. 

More interestingly, in such a situation, a ray coming 
from a mountain top should have no aberration as per 
Zapffe’s (1992) report [20].  

All experiments conform to the case 2). 
Therefore, we may conclude that electromagnetic fields 

are real physical entities, and that, as the earth spins about 
its axis, translates and rotates in its orbit, electric fields 
and magnetic fields originating either from the earth, stars 
or from the sun and existing at the near vicinity of the 
earth’s surface, spin, translate and rotate with the earth, 
exactly in the same way as other physical objects on the 
earth do. 

This indicates that the velocity of light is subject to the 
influence of the gravitational field of the earth and this 
has been confirmed by many experiments. Therefore, it 
is likely that the centrifugal force and especially the Co- 
riolis force originating from the spinning of the earth should 

Copyright © 2012 SciRes.                                                                                 JMP 



S. HAJRA 198 

also act on the propagation of light which have not been 
taken into consideration for the explanation of the results 
of the Michelson-Gale type experiments as proposed by 
Michelson-Gale, Kelly, Marmet and others. 

4.7. The Experiments of Michelson-Gale and 
Bilger et al. 

The earth just like all other physical objects carries light 
with it at the vicinity of its surface. Therefore, Coriolis 
force due to the rotation of the earth must act on the di- 
rection of propagation of light on the surface of the earth. 
This will explain the Michelson-Gale experiment and the 
experiment of Bilger et al. [21]. 

Let us choose a point O on the surface of the earth with 
the latitude 0  North and construct a tangential plane at 
this point. Now let us fix a Cartesian co-ordinate system 
in the plane such that OY represents the North and OX 
represents the East. Now suppose that the earth is not 
rotating and an element of light beam is arranged to 
move from a point P in the OY axis at the instant 0t   
in a small circular motion in the clockwise direction such 
that at the time  it touches the point Q in the OX axis 
and say . That is when  
and when . 

t
Q

 
OP r

, ,x r
O

t t
0, 0,t x  y  r

y o
Now suppose that the earth rotates with an angular ve- 

locity . Then the Coriolis force due to the rotation of 
the earth should deflect the beam mainly eastwardly and 
the beam will not touch the point Q. Instead it will touch 
a point R very adjacent to the OX axis. Now for a rough 
calculation of the distance OR, let us consider the motion 
of the beam on the OY axis with a velocity c from the 
point P to the point O. In this case, we may write, 



 2 sin 2 sinxF c c         (108) 

2

2

d
2 sin

d

x
c

t
                 (109) 

1

d
2 sin

d

x
c t

t
  C

2

            (110) 

2
1sinx c t C t C             (111) 

Remembering the initial condition and taking into ac-
count 

r
t

c
                         (112) 

We have, 
2

sin
r

x
c


                  (113) 

which is the deflection of the beam towards OX axis for a 
small circle. Therefore, in that case we have, 

2

sin
r

OR r
c


               (114) 

For the beam moving in the anticlockwise direction, 
this distance will be 

2

sin
r

r
c


              (115) 

From the last two equations we have for one complete 
rotation 

2

4
sin

A
t

c


              (116) 

where A is the area of the circle. Fringe shifts relating to 
Equation (116) seem to be verified by the Experiments of 
Michelson-Gale and Bilger et al. [21]. The result will 
remain more or less the same when the circle is large. 

(Stokes assumes that ether near the earth’s surface trans- 
lates with the earth, but it does not rotate along with the 
rotation of this planet which could explain the experi- 
ments of Michelson-Gale and Bilger et al. In that case the 
magnetic field due to a system of charges slowly moving at 
a point on the earth’s equator with a velocity u with res- 
pect to the earth’s surface eastward would be almost dou- 
ble the magnetic field of the same system of charges mov- 
ing similarly at 60˚ latitude when w  u, w being the 
rotational velocity of that point of the earth with respect 
to ether. This is impossible and so the assumption of Sto- 
kes too). 



5. Conclusions 

The deduction of the E-field and the B-field of a steadily 
moving point charge by Heaviside is a pioneering work 
in the nineteenth century. Depending on this deduction, 
we have deduced the electromagnetic momentum, the longi- 
tudinal and transverse electromagnetic masses of a steadily 
moving point charge classically. With the use of these re-
sults, we have explained classically the phenomena of in- 
crement of life spans of steadily moving radioactive par- 
ticles, Thomas Precession, Transverse Doppler Effect 
and the fringe shift measured in the Fizeau Experiment. 

We know from classical physics that electric charges, 
electric & magnetic fields and electromagnetic energy pos- 
sess momentum and energy which we could experience 
with our sense organs. Therefore, all these are real phy- 
sical entities (objects). All physical objects are subject to 
gravitation. Therefore, electromagnetic entities should simi- 
larly be subject to gravitation. This consideration imme- 
diately explains advance of perihelion of Mercury, bend- 
ing of light rays grazing the surface of the sun and gravi- 
tational red shift. 

Now, all physical objects at the surrounding of the 
earth are carried with the earth. Electromagnetic fields 
should similarly be carried with the earth. This at once ex- 
plains the null result of the Michelson-Morley type ex- 
periments with terrestrial, solar and astral light, Sagnac 
Effect on a rotating disk on earth, stellar aberrations as 
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observed by Bradley through a telescope filled with air, 
no further aberration as observed by Airy through a tele- 
scope filled with water and no aberration from a moun- 
tain top as reported by Zapffe (1992) [20]. The Coriolis 
force (originating from the spinning earth) that acts on 
the light beam explains the Michelson-Gale experiment 
and the experiments of Bilger et al. [21]. 

All those explanations demonstrate the non necessity 
of the invariant proposition as well as the space-time cur- 
vature propositions of Einstein. 

The analysis shows that the superiority of the theory of 
relativity—special & general—over classical physics as 
advocated and publicized by the mainstream physicists is 
myth. 

6. Acknowledgements 

To write this article I have been encouraged with the 
writings of Late Debabrata Ghosh [22] of Reserve Bank 
of India, Kolkata-1, Late Prof. K. C. Kar [23], founder of 
the Indian Institute of Theoretical Physics, Calcutta and 
Dr. M. C. Duffy, Editor of the Proceedings of PIRT Con- 
ferences, 1988-, London. I thank T. K. Basu, and Som- 
deb Seal for their kind help to prepare the manuscript. 

REFERENCES 
[1] O. Heaviside, “The Electromagnetic Effect of Moving 

Point Charge,” The Electrician, Vol. 22, 1888, pp. 147- 
148. 

[2] O. Heaviside, “On the Electromagnetic Effects Due to the 
Motion of Electricity through a Dielectric,” Philosophical 
Magazine, Vol. 27, No. 5, 1889, pp. 324-339. 

[3] J. J. Thomson, “On the Magnetic Effects Produced by 
Motion in the Electric Field,” Philosophical Magazine, 
Vol. 28, No. 170, 1889, pp. 1-14. 

[4] H. A. Lorentz, “The Theory of Electron,” Dover Publi- 
cations Inc., New York, 1951, pp. 35-36, 245-246. 

[5] S. Hajra, “The Cross Radial Force,” Proceedings, Natural 
Philosophy Alliance, Vol. 8, College Park, 2011, pp. 235- 
240. 

[6] W. B. Morton, “Notes on the Electromagnetic Theory of 
Moving Charges,” Philosophical Magazine, Vol. 41, 1896, 
pp. 488-494. 

[7] E. T. Whittaker, “A History of the Theories of Aether and 
Electricity,” Longmans, Green, and Co., London, 1910, pp. 
341-342.  

[8] J. R. Oppenheimer, “Lecture on Electrodynamics,” Gor- 
don and Breach Science Publishers, New York, 1970, pp. 
57-58. 

[9] A. L. Miller, “Albert Einstein’s Special Theory of Rela- 
tivity,” Springer, Berlin, 1981, pp. 98-99. 

[10] A. Liénard, “Champ Électrique et Magnétique,” L’Éclairage 
Électrique, Vol. 16, No. 27-29, 1898, pp. 5-14, 53-59, 106- 
112. 

[11] E. Wiechert, “Elektrodynamische Elementargesetze,” Ar-
chives Néerlandaises, Vol. 5, 1900, pp. 549-573. 

[12] O. D. Jefimenko, “Direct Calculation of the Electric and 
Magnetic Fields of an Electric Point Charge Moving with 
Constant Velocity,” American Journal of Physics, Vol. 62, 
No. 1, 1994, pp. 79-85. doi:10.1119/1.17716 

[13] O. Heaviside, “Electric Papers, Vol. 2,” Macmillan and 
Company, New York and London, 1892, p. 514. 

[14] S. Hajra, “Collapse of GRT: EM Interaction with Gravity 
derived from Maxwell and Newton,” Galilean Electro- 
dynamics, Vol. 18, No. 4, 2007, pp. 73-76. 

[15] S. Hajra, “A Study on the Interaction of Gravitating Fields 
with Electromagnetic Entities,” Journal of Gravitational 
Physics, Vol. 2, No. 2, 2008, pp. 7-22. 

[16] R. P. Feynman, R. B. Leighton and M. Sands, “The Fey- 
nman Lectures on Physics, Vol. 1,” Narosa Publishing 
House, New Delhi, 1998, p. 23. 

[17] R. P. Feynman, R. B. Leighton and M. Sands, “The Feyn- 
man Lectures on Physics, Vol. 3,” Narosa Publishing House, 
New Delhi, 1998, p. 1405. 

[18] V. M. Starzhinskii, “An Advance Course of Theoretical 
Mechanics,” Mir Publishers, Moscow, 1982, pp. 264-265. 

[19] S. Hajra, “A Critical Analysis of Special Relativity,” Pro- 
ceedings, Physical Interpretations of Relativity Theory, 
London, 2000, p. 146. 

[20] C. A. Zapffe, “Bradley Aberration and Einstein Space 
Time,” Indian Journal of Theoretical Physics, Vol. 40, 1992, 
pp. 145-148. 

[21] H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber and M. 
Schneider, “Ring Lasers for Geodesy,” IEEE Transac- 
tions on Instrumentation and Measurement, Vol. 44, No. 
2, 1995, pp. 469-470. doi:10.1109/19.377882 

[22] D. Ghosh, “The Michelson-Morley Experiment,” Indian 
Journal of Theoretical Physics, Vol. 42, No. 3, 1994, pp. 
73-79. 

[23] K. C. Kar, “A New Approach to the Theory of Relativ-
ity,” Institute of Theoretical Physics, Calcutta, 1970, pp. 
52-57. 

 
 

http://dx.doi.org/10.1119/1.17716
http://dx.doi.org/10.1109/19.377882

